Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Biomolecules ; 11(8)2021 08 23.
Article in English | MEDLINE | ID: covidwho-1367768

ABSTRACT

In 2019, COVID-19 emerged as a severe respiratory disease that is caused by the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The disease has been associated with high mortality rate, especially in patients with comorbidities such as diabetes, cardiovascular and kidney diseases. This could be attributed to dysregulated immune responses and severe systemic inflammation in COVID-19 patients. The use of effective antiviral drugs against SARS-CoV-2 and modulation of the immune responses could be a potential therapeutic strategy for COVID-19. Studies have shown that natural phenolic compounds have several pharmacological properties, including anticoronavirus and immunomodulatory activities. Therefore, this review discusses the dual action of these natural products from the perspective of applicability at COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Flavonoids/therapeutic use , Immunologic Factors/therapeutic use , Phytochemicals/therapeutic use , Protease Inhibitors/therapeutic use , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus/drug effects , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology
2.
Oxid Med Cell Longev ; 2020: 3173281, 2020.
Article in English | MEDLINE | ID: covidwho-734350

ABSTRACT

The outbreaks of viruses with wide spread and mortality in the world population have motivated the research for new therapeutic approaches. There are several viruses that cause a biochemical imbalance in the infected cell resulting in oxidative stress. These effects may be associated with the development of pathologies and worsening of symptoms. Therefore, this review is aimed at discussing natural compounds with both antioxidant and antiviral activities, specifically against coronavirus infection, in an attempt to contribute to global researches for discovering effective therapeutic agents in the treatment of coronavirus infection and its severe clinical complications. The contribution of the possible action of these compounds on metabolic modulation associated with antiviral properties, in addition to other mechanisms of action, is presented.


Subject(s)
Antioxidants/pharmacology , Coronavirus Infections/drug therapy , Coronavirus/drug effects , Animals , Antioxidants/therapeutic use , Coronavirus/pathogenicity , Coronavirus Infections/virology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL